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3-Ethoxycyclobutanones reacted with silyl enol ethers to give formal [4+2] cycloadducts, 3-ethoxy-5-
trimethylsiloxycyclohexanone derivatives, by using ethylaluminum dichloride as a Lewis acid. Highly
oxygenated cyclohexanone derivatives were stereoselectively prepared by this method.

� 2009 Elsevier Ltd. All rights reserved.
Table 1
Effect of Lewis acids on formal [4+2] cycloaddition between cyclobutanone 1a and
silyl enol ether 2a

Entry Lewis acid 3aaa (yield %) 4aaa (yield %)

1 EtAlCl2 70 Trace
2 SbCl5 41 8
3 SnCl4 35 1
[4+2] Cycloaddition reaction1 is an effective method for the con-
struction of a six-membered ring, and the Diels–Alder reaction2 is
frequently employed for this purpose. Silyl enol ethers are readily-
available and versatile building blocks in organic synthesis.3

Though siloxy dienes are employed as C4 units in Diels–Alder reac-
tion,4 the use of silyl enol ethers as C2 units is very rare.5 For pre-
paring six-membered carbocycles bearing an oxygen substituent, it
is meaningful to establish [4+2] cycloaddition using silyl enol
ethers as a C2 component.6

Recently, we found that dihydro-c-pyrone derivatives were
efficiently synthesized in a one-pot manner by boron trifluoride
etherate-catalyzed formal [4+2] cycloaddition between 3-alkoxycy-
clobutanones and carbonyl compounds such as aldehydes and ke-
tones.7 Because the C–O bond of aldehydes and ketones was
effectively inserted into a cyclobutanone ring,8 we then planned the
insertion of a C–C double bond of silyl enol ethers. We report herein
formal [4+2] cycloaddition between 3-ethoxycyclobutanones and si-
lyl enol ethers to afford cyclohexanone derivatives.

First, we tried to find a suitable Lewis acid which catalyzed
[4+2] cycloaddition between 2,2-dimethyl-3-ethoxycyclobutanone
(1a) and 1-phenyl-1-trimethylsilyloxyethene (2a) (Table 1). Boron
trifluoride etherate, titanium(IV) chloride, and trimethylsilyl tri-
flate did not catalyze the desired [4+2] cycloaddition reaction,
whereas the Lewis acids shown in Table 1 catalyzed the desired
cycloaddition reaction and cycloadducts (3aa and 4aa)9 were ob-
tained in 22–70% yields. Ethylaluminum dichloride catalyzed the
desired reaction most efficiently to afford a trimethylsilylated cyc-
loadduct 3aa in 70% yield along with a trace amount of a desilylat-
ed diastereomer 4aa (entry 1). It should be noted that other
products such as desilylated 3aa and trimethylsilylated 4aa were
not obtained. Other Lewis acids such as antimony(V) chloride, ti-
n(IV) chloride, scandium(III) triflate, and gallium(III) chloride also
gave 3aa as the major product but less efficiently (entries 2–5).
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atsuo).
Typical experimental procedure is as follows: 1.3 equiv of ethylalu-
minum dichloride was added to a solution of 1.5 equiv of 3-eth-
oxycyclobutanone 1a and 1.0 equiv of silyl enol ether 2a in
dichloromethane at �78 �C. After the reaction mixture was stirred
at �78 �C for 30 min, the usual workup procedure gave 3aa.10

Next, some silyl enol ethers of acetophenone derivatives 2b–e
were employed in the reaction with cyclobutanone 1a (Table 2).
When a methoxy or methyl group was substituted at the para-po-
sition (X) of the phenyl group, the yields of cycloadducts were low
(entries 1 and 2). On the other hand, substitution with a chloro
group gave a result comparable to that obtained by using silyl enol
ether 2a (X = H) (entries 3 and 4). Silyl enol ether 2e having a nitro
group reacted less stereoselectively to afford 3ae in 44% yield along
with 5ae in 6% yield and two desilylated diastereomers (4ae and
6ae) in 29% yield (entry 5).
4 Sc(OTf)3 26 2
5 GaCl3 22 0

a Isolated yield.



Table 4
Formal [4+2] cycloaddition between cyclobutanones 10a–c and silyl enol ethers

Entry Cyclobutanone Silyl enol ether

1 2a

2b 2f

3b 2a

4b 1c

a Isolated yield.
b Two equivalents of cyclobutanone were employed.
c A diastereomer was obtained in 14% yield.

Table 3
Formal [4+2] cycloaddition between cyclobutanone 1a and Z-silyl enol ethers 2f–h

Entry 2 (R) 3a (yield %)

1 2f (Me) 3af (52)
2 2g (Et) 3ag (52)
3 2h (i-Pr) 3ah (14)

a Isolated yield.

Table 2
Formal [4+2] cycloaddition with silyl enol ethers of acetophenone derivatives

Entry Silyl enol ether (X) Product Yielda (%)

1 2b (OMe) 3ab 37
2 2c (Me) 3ac 48
3 2a (H) 3aa 70
4 2d (Cl) 3ad 69
5 2e (NO2) 3ae 44b

a Isolated yield.
b A diastereomer was obtained in 6% yield along with two desilylated cycload-

ducts (29%).
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Table 3 shows the results of cycloaddition between cyclobuta-

none 1a and trisubstituted silyl enol ethers. When Z-trimethylsilyl
enol ether 2f prepared from propiophenone was employed, only
two diastereomers, 3af and 4af, were obtained in 52% and 19% yields,
respectively (entry 1). Cycloaddition with Z-silyl enol ether 2g pre-
pared from butyrophenone also proceeded similarly, while the reac-
tion with 2h bearing an isopropyl group as R proceeded sluggishly to
afford cyloadducts 3ah, 4ah, and 6ah in low yields (entries 2 and 3).
These results suggest that the present cycloaddition is strongly
Product Yielda (%)

51

52c

48

34

4a (yield %) 6a (yield %)

4af (19) 0
4ag (18) 0
4ah (9) 6ah (11)
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influenced by steric factors. It is interesting that the cis-relationship
between R and OR0 (3af–3ah) or R and OH (4af–4ah) reflects the
Z-configuration of silyl enol ethers 2f–h employed.

Cycloaddition of various cyclobutanones 1b–d with silyl enol
ethers 2a, f, and i was performed (Table 4). When 2,2-diethyl-3-
ethoxycyclobutanone 1b was employed for the cycloaddition with
2a, the desired cycloadduct 3ba was obtained in 51% yield (entry
1). Cycloaddition of trans-2-methoxy- or 2-benzyloxy-3-ethoxycy-
clobutanones 1c, d gave the corresponding cycloadducts in 66%
and 48% yields, respectively (entries 2 and 3).9 A polyoxygenated
cyclohexanone derivative 3ci was obtained stereoselectively by
cycloaddition between 1c and 2i.

Thus, [4+2] cycloaddition between 3-ethoxycyclobutanones and
silyl enol ethers proceeded by the catalysis with ethylaluminum
dichloride, and 3-ethoxy-5-trimethylsiloxycyclohexanone deriva-
tives were obtained stereoselectively. The present cycloaddition
will be useful for the stereoselective preparation of highly oxygen-
ated cyclohexanone derivatives.
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