Tetrahedron Letters 50 (2009) 5831-5833

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Formal [4+2] cycloaddition between 3-ethoxycyclobutanones and silyl enol ethers

Jun-ichi Matsuo*, Shoko Negishi, Hiroyuki Ishibashi

School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

ARTICLE INFO

Article history: Received 30 June 2009 Revised 31 July 2009 Accepted 3 August 2009 Available online 13 August 2009

ABSTRACT

3-Ethoxycyclobutanones reacted with silvl enol ethers to give formal [4+2] cycloadducts, 3-ethoxy-5trimethylsiloxycyclohexanone derivatives, by using ethylaluminum dichloride as a Lewis acid. Highly oxygenated cyclohexanone derivatives were stereoselectively prepared by this method.

© 2009 Elsevier Ltd. All rights reserved.

1

2

0

[4+2] Cycloaddition reaction¹ is an effective method for the construction of a six-membered ring, and the Diels-Alder reaction² is frequently employed for this purpose. Silvl enol ethers are readilyavailable and versatile building blocks in organic synthesis.³ Though siloxy dienes are employed as C4 units in Diels-Alder reaction,⁴ the use of silvl enol ethers as C2 units is very rare.⁵ For preparing six-membered carbocycles bearing an oxygen substituent, it is meaningful to establish [4+2] cycloaddition using silvl enol ethers as a C2 component.⁶

Recently, we found that dihydro- γ -pyrone derivatives were efficiently synthesized in a one-pot manner by boron trifluoride etherate-catalyzed formal [4+2] cycloaddition between 3-alkoxycyclobutanones and carbonyl compounds such as aldehydes and ketones.⁷ Because the C–O bond of aldehydes and ketones was effectively inserted into a cyclobutanone ring,⁸ we then planned the insertion of a C-C double bond of silvl enol ethers. We report herein formal [4+2] cycloaddition between 3-ethoxycyclobutanones and silyl enol ethers to afford cyclohexanone derivatives.

First, we tried to find a suitable Lewis acid which catalyzed [4+2] cycloaddition between 2,2-dimethyl-3-ethoxycyclobutanone (1a) and 1-phenyl-1-trimethylsilyloxyethene (2a) (Table 1). Boron trifluoride etherate, titanium(IV) chloride, and trimethylsilyl triflate did not catalyze the desired [4+2] cycloaddition reaction, whereas the Lewis acids shown in Table 1 catalyzed the desired cycloaddition reaction and cycloadducts (3aa and 4aa)⁹ were obtained in 22-70% yields. Ethylaluminum dichloride catalyzed the desired reaction most efficiently to afford a trimethylsilylated cycloadduct **3aa** in 70% yield along with a trace amount of a desilylated diastereomer 4aa (entry 1). It should be noted that other products such as desilylated **3aa** and trimethylsilylated **4aa** were not obtained. Other Lewis acids such as antimony(V) chloride, tin(IV) chloride, scandium(III) triflate, and gallium(III) chloride also gave **3aa** as the major product but less efficiently (entries 2–5).

Corresponding author. Tel./fax: +81 76 234 4439.

Typical experimental procedure is as follows: 1.3 equiv of ethylaluminum dichloride was added to a solution of 1.5 equiv of 3-ethoxycyclobutanone 1a and 1.0 equiv of silvl enol ether 2a in dichloromethane at -78 °C. After the reaction mixture was stirred at -78 °C for 30 min, the usual workup procedure gave 3aa.¹⁰

Next, some silvl enol ethers of acetophenone derivatives 2b-e were employed in the reaction with cyclobutanone **1a** (Table 2). When a methoxy or methyl group was substituted at the para-position (X) of the phenyl group, the yields of cycloadducts were low (entries 1 and 2). On the other hand, substitution with a chloro group gave a result comparable to that obtained by using silyl enol ether 2a (X = H) (entries 3 and 4). Silyl enol ether 2e having a nitro group reacted less stereoselectively to afford **3ae** in 44% yield along with 5ae in 6% yield and two desilylated diastereomers (4ae and 6ae) in 29% yield (entry 5).

26

22

^a Isolated yield.

4

5

Sc(OTf)₃

GaCla

Table 1

E-mail address: jimatsuo@p.kanazawa-u.ac.jp (J. Matsuo).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.08.013

Table 2

Formal	[4+2]	cycloaddition	with silyl e	enol ethers of	acetophenone	derivatives

Entry	Silyl enol ether (X)	Product	Yield ^a (%)
1	2b (OMe)	3ab	37
2	2c (Me)	3ac	48
3	2a (H)	3aa	70
4	2d (Cl)	3ad	69
5	2e (NO ₂)	3ae	44 ^b

^a Isolated yield.

 $^{\rm b}$ A diastereomer was obtained in 6% yield along with two desilylated cycload-ducts (29%).

Table 3 shows the results of cycloaddition between cyclobutanone **1a** and trisubstituted silyl enol ethers. When Z-trimethylsilyl enol ether **2f** prepared from propiophenone was employed, only two diastereomers, **3af** and **4af**, were obtained in 52% and 19% yields, respectively (entry 1). Cycloaddition with Z-silyl enol ether **2g** prepared from butyrophenone also proceeded similarly, while the reaction with **2h** bearing an isopropyl group as R proceeded sluggishly to afford cyloadducts **3ah**, **4ah**, and **6ah** in low yields (entries 2 and 3). These results suggest that the present cycloaddition is strongly

Table 3

Formal [4+2] cycloaddition between cyclobutanone 1a and Z-silyl enol ethers 2f-h

Entry	2 (R)	3 ^a (yield %)	4 ^a (yield %)	6 ^a (yield %)
1	2f (Me)	3af (52)	4af (19)	0
2	2g (Et)	3ag (52)	4ag (18)	0
3	2h (<i>i</i> -Pr)	3ah (14)	4ah (9)	6ah (11)

^a Isolated yield.

Table 4

Formal [4+2] cycloaddition between cyclobutanones 10a-c and silyl enol ethers

^a Isolated yield.

^b Two equivalents of cyclobutanone were employed.

^c A diastereomer was obtained in 14% yield.

influenced by steric factors. It is interesting that the cis-relationship between R and OR' (**3af-3ah**) or R and OH (**4af-4ah**) reflects the *Z*-configuration of silvl enol ethers **2f-h** employed.

Cycloaddition of various cyclobutanones **1b–d** with silyl enol ethers **2a**, **f**, and **i** was performed (Table 4). When 2,2-diethyl-3ethoxycyclobutanone **1b** was employed for the cycloaddition with **2a**, the desired cycloadduct **3ba** was obtained in 51% yield (entry 1). Cycloaddition of *trans*-2-methoxy- or 2-benzyloxy-3-ethoxycyclobutanones **1c**, **d** gave the corresponding cycloadducts in 66% and 48% yields, respectively (entries 2 and 3).⁹ A polyoxygenated cyclohexanone derivative **3ci** was obtained stereoselectively by cycloaddition between **1c** and **2i**.

Thus, [4+2] cycloaddition between 3-ethoxycyclobutanones and silyl enol ethers proceeded by the catalysis with ethylaluminum dichloride, and 3-ethoxy-5-trimethylsiloxycyclohexanone derivatives were obtained stereoselectively. The present cycloaddition will be useful for the stereoselective preparation of highly oxygenated cyclohexanone derivatives.

Acknowledgments

This study was financially supported by a SUBOR grant and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.08.013.

References and notes

- Reviews: (a) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990; (b) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10.
- (a) Oppolzer, W.. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pegamon Press: New York, 1991; Vol. 5., Chapter 4.1 (b) Kloetzel, M. C. Org. React. **1948**, 4, 1; (c) Holmes, H. C. Org. React. **1948**, 4, 60; (d) Butz, L. W.; Rytina, A. W. Org. React. **1949**, 5, 136.
- 3. (a) Brownbridge, P. Synthesis 1983, 1; (b) Brownbridge, P. Synthesis 1983, 85.
- For leading references: (a) Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807; (b) Danishefsky, S. Acc. Chem. Res. 1981, 14, 400; (c) Danishefsky, S. Chemtracs-Org. Chem. 1989, 2, 273; (d) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252; (e) Kozmin, S. A.; Janey, J. M.; Rawal, V. H. J. Org. Chem. 1999, 64, 3039; (f) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1997, 119, 7165; (g) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562.
- 5. Hierstetter, T.; Tischler, B.; Sauer, J. Tetrahedron Lett. 1992, 33, 8019-8022.
- Formal [3+2] cycloaddition between silyl enol ethers and cyclopropane derivatives: (a) Saigo, K.; Shimada, S.; Shibasaki, T.; Hasegawa, M. Chem. Lett. 1990, 1093; (b) Komatsu, M.; Suehiro, I.; Horiguchi, Y.; Kuwajima, I. Synlett 1991, 771; (c) Sugita, Y.; Kawai, K.; Hosoya, H.; Yokoe, I. Heterocycles 1999, 51, 2029.
- Matsuo, J.; Sasaki, S.; Tanaka, H.; Ishibashi, H. J. Am. Chem. Soc. 2008, 130, 11600.
- Synthetic application of cyclobutanones: (a) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449; (b) Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103, 1485; (c) Belluš, D.; Ernst, B. Angew. Chem., Int. Ed. Engl. 1988, 27, 797; (d) Conia, J. M.; Robson, M. J. Angew. Chem., Int. Ed. Engl. 1975, 14, 473.
- 9. Stereochemistry was determined by NOE experiments. See Supplementary data.
- Various reaction conditions were surveyed, but cycloadducts were obtained up to 70% yield probably because 3-ethoxycyclobutanone 1a and silyl enol ether 2a were unstable in the presence of ethylaluminum dichloride.